skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Lookman, Turab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kalidindi, Surya R.; Kalinin, Sergei V.; Lookman, Turab; Foster, Ian (Ed.)
    The discovery of new compounds and materials has a fundamental impact on industrial and economic development. The discovery process is increasingly supported by computational approaches as they provide efficient means to uncover promising targets. In the past two decades, we have witnessed tremendous growth in the drug discovery field due to the implementation of virtual high-throughput screening (HTPS) techniques. Recently, these techniques have been embraced in various materials applications, such as catalysis, energy materials, optoelectronics, photovoltaics, etc., thereby developing into a promising tool for the discovery of nextgeneration materials. In addition to the discovery of new materials, these HTPS studies provide a solid data foundation for rational design approaches as well as guidance for experimental partners. In this chapter, we review recent HTPS efforts undertaken for new materials for photovoltaics, gas separation, optical devices, and OLEDs. We also review HTPS projects for catalyst materials for various important reactions, such as the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR). 
    more » « less